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SUMMARY 
The paper describes a new approach to approximating the convection term found in typical steady-state 
transport equations. A polynomial-based discretization scheme is constructed around a technique called 
‘curvature compensation’; the resultant curvature-compensated convective transport approximation is 
essentially third-order accurate in regions of the solution domain where the concept of order is meaningful. In 
addition, in linear scalar transport problems it preserves the boundedness of solutions. Sharp changes in 
gradient in the dependent variable are handled particularly well. But above all, the scheme, when used in 
conjunction with an AD1 pentadiagonal solver, is easy to implement with relatively low computational cost, 
representing an effective algorithm for the simulation of multi-dimensional fluid flows. Two linear test 
problems, for the case of transport by pure convection, are employed in order to assess the merit of the 
method. 

KEY WORDS Higher order Boundedness Convective transport Curvature Finite difference 

1. INTRODUCTION 

This paper proposes a new approach to approximating the convection term in typical multi- 
dimensional steady-state transport equations, so as to produce physically reasonable results, 
particularly in circumstances where standard methods fail. This approach, called curvature- 
compensated convective transport (CCCT), yields an algorithm which strictly preserves the 
boundedness (monotonicity) of a convected scalar transport variable. As a result, sharp changes in 
gradient are handled particularly well. The method requires no special knowledge about the 
solution and all internal grid points, spanning the computational domain of interest, are treated 
identically. 

The general steady-state convection4iffusion equation, written in Cartesian-tensorial form, for 
a scalar $, can be stated as 

and can be approximated in finite difference form by either (a) directly performing a local Taylor 
series expansion of the derivatives, ignoring truncation terms of a certain order, or by 
(b) integrating over a macro control volume and replacing the face values and derivatives by 
approximations based on either Taylor series expansions or some form of interpolation. Ideally, 
the resulting finite difference expressions will be both conservative and transportive’ and possess 
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certain desirable properties such as stability, accuracy and boundedness. For finite difference 
approximations, such features are reflected in the formally asymptotic truncation error terms. The 
importance of this error is evident in regions where the quantity 

that is, in regions where high-wave-number Fourier components of 4 are important to the 
solution2-such is the case in many problems of physical interest. 

In parts of the solution domain where C#I and uj are smoothly varying functions, higher-order 
approximations such as the QUICK3 (Quadratic Upstream Interpolation for Convective 
Kinematics) and CU14 (Cubic Upwind Interpolation) schemes (see also the cubic upwind scheme 
of A g a r ~ a l , ~  although it should be noted that this approximation is non-conservative) handle 
equation (1) quite adequately. However, in the presence of sharp changes in gradient or strong 
sources (sinks), relation (2) holds and the truncation error is of the same order of magnitude as the 
approximation. Consequently, short-wavelength errors quickly manifest themselves in such 
regions. The use of higher-order polynomial numerical approximations cannot resolve this 
problem, because the error terms, at all orders, are roughly of the same size as the function itself. 

The CCCT finite difference approach described here overcomes these steep gradient problems by 
employing physically realistic constraints to ensure monotonic solutions while maintaining a high 
degree of accuracy. The method, based on a control volume formulation, is stable, conservative, 
transportive and essentially third-order accurate in regions where the concept of order is 
meaningful, but above all it is simple to implement. The implicit algorithm SMART, described 
later, generalizes quite conveniently for use in both two and three dimensions. Here we have chosen 
to perform a detailed investigation of two simple, yet severely demanding, linear two-dimensional 
steady-state test problems in order to demonstrate the general principles of CCCT and its 
potentials. 

Section 2 gives an account of the philosophy which underpins CCCT, covering topics such as 
boundedness and convective stability, and a new convection boundedness criterion is presented in 
Section 3. This is then followed by a detailed derivation of the SMART algorithm in Section 4 and 
an outline of the solution strategy in Section 5. The test problems and associated results are 
discussed in Section 6, with particular attention being focused on the problem of pure convection. 
The overall performance of the approach is discussed and conclusions are given in Section 7. 

2. ACCURACY, CONVECTIVE STABILITY AND BOUNDEDNESS 

Accuracy 

Classically, the accuracy of finite difference approximations is judged in terms of the leading 
truncation error term of a Taylor series expansion. This term is shown in Table I for five well 
known discretization schemes. However, the use of a Taylor series expansion to judge accuracy is 
only meaningful for those Fourier components of the real solution having a wave number 0(2n/L).  
For high wave numbers, O(n/Ax), a formal increase in the order of accuracy will not improve the 
prediction, since the error is independent of the mesh size. It is the missing truncation terms (from 
any suitable numerical approximation) that would have a damping effect in these situations, 
restricting the propagation of such errors. The importance of this observation will become 
apparent later. 
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Convective stability 

According to L e ~ n a r d , ~  convective stability may be defined as the sensitivity of the convective 
influx, C,,, into the control volume centered at i -  1, of the nodal configuration shown in Figure 1, 
to the change in +i- ,-namely ~C,,/&#I~- , . There are three possibilities: 

< 0 stable sensitivity, 
= O  neutral sensitivity, 
> 0 unstable sensitivity. 

(3) 

In order to ensure convective stability, it is important to have a numerical negative feedback 
mechanism, such that any disturbance to + i -  from an outside influence will reduce or enhance C,, 
in line with whether +i- , increases or decreases, respectively-+i- will then converge to a value 
consistent with the numerical approximation. 

From a purely physical viewpoint, convection is associated with the transport of fluid properties 
from upstream to downstream and, as such, any numerical approximation to convection should 
mirror this transportive feature. Hence it must possess an element of upwind bias, which, in 
relation to numerical models for convective transport, is an important concept. Alternatively, from 
a numerical standpoint, any numerical approximation to convection which is not upwind biased 
will lack convective stability and its associated coefficient matrix will be numerically unstable, and 
vice versa.4 

It should be noted that the analogous property of diffusive stability, which depends upon the 
sensitivity of the diffusive influx, D,,, into the control volume, to the change in I#+ ,, is always 
negative (for p > 0) when the diffusive term is approximated by standard central differencing. This is 
sometimes enough to counterbalance the lack of convective stability. However, for flows in which 
the cell Peclet number is high (convection-dominated), it may be insufficient to avoid compu- 
tational disaste'r. 

Diagonal dominance and boundedness 

Computational fluid dynamicists generally associate boundedness with the property of diagonal 
dominance, that is, the computed solution given by a numerical approximation is deemed to be 
bounded (devoid of unphysical overshoots or undershoots) if its associated coefficient matrix is 
diagonally dominant. If this condition holds, then the value of the dependent variable, at a desired 
grid point, represents simply a weighted average of its neighbours (in the absence of a source term 
in the governing equation). This guarantees that the solution is unconditionally bounded, with 
respect to the attendant boundary conditions, over the domain of interest. Also, the coefficient 
matrix is numerically stable. 

The concept of diagonal dominance is useful in quantifying absolute boundedness (and similarly 
the numerical stability of the coefficient matrix) for a particular discretization scheme, but does not 

I i 
i -2 I i -1 I I 

I 
I 
I I 
I I 

I I L -------- J 

i-312 i-1/2 

Figure 1 .  Nodal configuration showing a typical control volume 
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itself lead one to a deeper understanding of the underlying physics of the problem and may even 
result in misconceptions. For example, it is frequently stated that a discretization scheme may 
produce solutions with ‘wiggles’ when the cell Peclet number is greater than some critical value- 
see Table I. If this is exceeded, the coefficient matrix is no longer diagonally dominant. However, 
the cell Peclet number itself is not the cause of wiggles; its role is merely to exaggerate or diminish 
(depending on its relative magnitude) any undershoots or overshoots generated by the convection 
approximation being employed. 

Both of the higher-order schemes, QUICK and CUI, mentioned earlier (unlike the simple 
upwind scheme) are, by virtue of the above definition, classified as being unbounded. Yet, if the 
conditions are favourable, they generate perfectly acceptable results. It is arguable, therefore, that 
strict adherence to diagonal dominance and its satisfaction as a prerequisite for bounded solutions 
could be misleading, since it represents, in some cases, only a sufficient condition for guaranteeing 
bouundedness. The question, therefore, that begs to be answered is-in the quest for higher-order, 
bounded, numerical models for convective transport, should computational fluid dynamicists 
focus their attention on ensuring that the associated coefficient matrix is diagonally dominant or 
should they look to satisfy another, more physically relevant, set of criteria? Here, the authors have 
chosen to pursue the latter alternative. 

Normalization 

In order to simplify the discussion of boundedness and for many other purposes, it is instructive 
and indeed useful to introduce a normalized dependent variable A. Consider, without loss of 
generality, the right-hand face of the control volume centred at i - 1 (as depicted in Figure 1). Here 
and in the ensuing analysis it will be assumed, for the sake of simplicity, that ui- > O .  

with k = i - 2 ,  i - 3 1 2 , .  . . , i .  
It is clear from (4) that the normalization employed is upwind biased. Also, as pointed out by 

Leonard6 and as will become apparent later, & - indicates the degree of upwind bias inherent in 
any normalized finite difference approximation to the face value 4i-1/2. For the case of one- 
dimensional flow and constant velocity t io, the normalized integral form of equation (I), over this 
control volume, can be written as 

# i - 1 / 2 - # i - 3 / 2  =F, 6, - 1/2 - 6i - 3 / 2  = 4i- 4i- 2 

where 
terms: 

is the net effective normalized source term, comprised of diffusion and physical source 

- [ ( :2) ax  i - 1 1 2  - ( :2) d x  i -3 /2  ] + l13:y S dx 
S* = 

u o ( @ i - @ l - 2 )  

In multi-dimensional flow problems, equation (5 )  is also valid, with additional contributions to 
coming from the components of diffusion and convection in the associated mutually orthogonal 
directions. Hence equation (5 )  is a general representation for the transport of 4 in the case of 
constant velocity. 
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A new perspective on boundedness constraints 

Quadratic profiles, which one would expect to exist, relating $ to x when $i- z 1 or 0, are 
shown in Figure 2, A professional draftsman would, more than likely, draw the same profiles if 
asked to fit a curve through the three identical points (0, 0), (Ax, $i- 1) and  AX, 1). A professional 
computational fluid dynamicist, on the other hand, would instinctively view this as a totally 
unreasonable representation of the physics (unless, that is, a large source term were known to be 
present in the system). Monotonic profiles similar to the ones shown would be considered to be 
much more representative and realistic; in which case the value of $i- lies between, or is locally 
bounded by, $i- and either 1 or 0, with the greatest variation in $ taking place over a thin layer 
located upstream (x sz 0) or downstream (x x 2Ax), respectively. The inherent violation of 
boundedness through using a quadratic profile is obvious. When &- % 1, $i- 112 is too large 
(z9 /8)  and the value of $i must increase (overshoot), enhancing the convective flux at i + 1/2, in 
order to balance the high (unphysical) influx to the control volume centred at i .  This lack of 
‘interpolative boundedness’ (that is, the approximate face value $i - 1,2, lies outside the bounds of 
its neighbouring values at the nodes i and i - 1) is also inherent in other high-order approximations, 
such as CUI and second-order upwinding. In order to satisfy interpolative boundedness, one 
requiresthat $ i - 1 , 2 ~ ( $ i - l ,  11 when&,E(-m, l ] , and$i - l , ,~[ l ,$ i - l )when $ i - l ~ [ l , m ) .  
Only the simple upwind and central difference approximations satisfy this condition. Any 
discretization scheme violating it may give values for the convective fluxes which exceed those that 
are physically possible. However, guaranteeing interpolative boundedness does not necessarily 
result in ‘computed boundedness’ (or ‘computed monotonicity’ within the monotonic range of 

Computed boundedness is what one desires; that is, the computed solution should not 

A monotonic p ro f i le  1 ,. 
A quadratic p ro f i le  

fo r  $i-, - 1 

\“ monotonic p ro f i Ie  1. ,. 
for $i-l- 0 

A quadratic p ro f i le  I 

Figure 2. A schematic illustration of quadratic and monotonic profiles passing through the points (0, 0), (Ax, 6,- and 
 A AX, 1) in regions of potential undershoot and overshoot 
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contain any unphysical overshoots or undershoots and should remain bounded with respect to the 
attendant boundary values in the absence of a physical source term. In order to achieve computed 
boundedness, interpolative boundedness is a necessary (as explained earlier) but not sufficient 
condition. 

If the normalized effective source term F i n  equation (5) is positive, physical considerations lead 
one to the conclusion that $i- must be greater than 0, and vice versa. In physical terms, if $i- ~ 0 ,  
the face value & must be dominated by the upstream conditions and is negligibly small; 
while, if $i- x 1, the downstream conditions prevail. In both situations a rapid change in 4 occurs 
in a region considerably less than the local mesh spacing Ax and as a consequence there is no means 
by which it can be resolved numerically. For moderate gradients of 4, $i- ~ 0 . 5 .  Figures 3(aHc) 
show all possible variations of 4 across three successive grid points in physical space for different 
$i- scenarios. For the computed solution to mimic the physical features shown in Figures 3(aHc), 
we must have 

for F<o, $ i - l < ~ .  

It is not difficult to see that these three constraints (which are consistent with equation ( 5 )  and 
physical expectations) are both necessary and sufficient to ensure computed boundedness 
(independent of the number of nodal points involved in approximating the face value). Figure 3(d) 
shows an unrealistic profile for 6, in which, although s* > 0 (& - ljz > $i- 3 1 2 )  within the control 
volume centred at i- 1 ,  the value of $i- is negative. 

1 

b 0  

i-2 i-I I i-2 i-1 i 

1 

6 

0 

i-2 i-I I i-2 i -1 I 

Figure 3. Profiles of 6 across three successive grid points, indicating physically realistic scenarios: (a) & > 1 (cf. 
inequality (7a)); (b) &- < O  (cf. inequaltiy (7c)); (c) & ,E[O, 13 (cf. inequality (7b)); (d) $i-l  <0 ,  F>O, & ,iz >&3i1 

(a physically unrealistic case) 
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3. A CONVECTION BOUNDEDNESS CRITERION 

Unlike the QUICK scheme with its tantalising offer of superior accuracy and an end to the plagues 
of numerical diffusion, the ramifications of Leonard’s conjectured monotonicity criterion6 have 
remained more or less unnoticed by the computational fluid dynamics community at large. The 
underlying concepts are simple, having been fully verified and discussed in Section 2, and his rather 
loosely stated criterion can be generalized to give a more formally rigorous convection 
boundedness criterion (CBC) for implicit steady-state flow calculations. 

Criterion. Define a continuous increasing function or union of piecewise continuous increasing 
functionsfrelating the modelled normalized face value $i- lj2,  to the normalized upstream nodal 
value $i- that is, $i- 1/2 =f(&- ). Then a finite difference approximation to bi- ljz is bounded if 

= $i-  and above by unity and (i) for $i- 1 ~ [ 0 ,  l],fis bounded below by the function &.- 
passes through the points (0,O) and (1, 1) ;  

(ii) for $i- $ [o, 11, f is equal to & I .  

This criterion is illustrated diagramatically in Figure 4. 
The first condition ensures that the computed solution remains monotonic and satisfies the 

inequalities given in (7b), while the second relates to non-monotonic profiles and satisfies the 
inequalities given in (7a) and (7c). 

The CBC is a necessary and sufficient condition for achieving computed boundedness if only 
three, neighbouring, upstream nodal values are used to approximate face values. Firstly, the 
approximated face value $i- 1/2, satisfies interpolative boundedness for all values of $,-, (this also 
applies to all other face values); hence no unrealistic convective fluxes can exist throughout the 
entire solution domain. Secondly, although the approximation to $i- is independent of $i- 3/2 

Figure 4. Diagrammatic representation of the convection boundedness criterion plotted in the (&, , & 
= + i + l  and the shaded area indicate the region over which the criterion is valid 

plane. The 
line & 
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and F, the CBC guarantees that, if S* is positive $i- > 0, and vice versa. This can be verified as 
follows: 

= $i- 1, in the third quadrant (Figure 4), s. must be less than or equal 
to zero because 6 i -312  is bounded between zero and 6,- 1; i f f  lies below this line, 
interpolative boundedness is violated; ifflies above this line, $i-3/2 may be lower than 
$i- 1/2-if this happens, then undershoots may occur for s*>O, as depicted in Figure 3(d), 
or a minimum might be exaggerated because $i- must decrease until & 1/2 < $i- 3,2, in 
order to satisfy equation (5).  

must be positive because 
$i- 3i2 is below 4i- iff lies above this line, interpolative boundedness is violated; iff lies 
below this line, $i -3 /2  might be greater than $i -1 ,2  and hence, following a similar 
argument to that above, overshoots or the exaggeration of a maximum may occur. 

must be 
positive because $ i - l j 2  is always greater than $i -3 /2 .  Finally, f must pass through the 
points (0,O) and (1, 1) in order to satisfy the requirement that the solution should follow the 
line $i- = $i- outside the monotonic range of $i- 

Although the above argument is based on a one-dimensional analysis, it is not difficult to show 
that the CBC is also a necessary and sufficient condition for guaranteeing computed boundedness 
in general multi-dimensional fluid flow simulations (see Appendix I). 

(i) Along the line $i- 

(ii) Along the line $iF 1/2 = $i- 1, in the first quadrant, for $i- > 1, 

(iii) If f lies within the shaded area (the monotonic range, shown in Figure 4), 

Boundedness versus accuracy 

If the solution of a problem is to remain bounded, then the approximation to 4i.- lj2 must satisfy 
the above CBC. Outside the monotonic range of $i- and for $i- -, 1 or 0, the CBC is extremely 
stringent, see Figure4. Under these situations the true variation in 4 cannot be resolved 
numerically, since the width of the thin layer over which rapid changes in 4 occur is much less than 
the mesh spacing Ax. A numerical error is unavoidably introduced which cannot be eliminated 
simply by a formal increase in the order of accuracy of the numerical approximation to $i- l i 2 .  

Similarly, a reduction in mesh size will not remove these types of error, although such action would 
minimize their occurrence within the solution domain. Indeed, it can be shown,’ by taking account 
of a limited number of the truncated derivative terms in standard approximations such as QUICK, 
that the relative error is a constant (for each) independent of the mesh size. Therefore a suitable 
approximation to 4i - 1/2 is one which minimizes error propagation while avoiding undershoots or 
overshoots. 

In Figure 5 the normalized profiles of some well known discretization schemes are shown, all of 
which are at least second-order accurate-except, that is, the pure upwind approximation. 
However, it can be seen from this figure that the latter is the only one which can be classed as being 
unconditionally bounded in terms of the CBC. Unfortunately, there is a catch, in the form of 
excessive numerical diffusion; this is surely now recognized as too high a price to pay in order to 
guarantee solutions without undershoots or overshoots. Also, it can be seen that all of the higher- 
order approximations pass through the point (1/2,3/4). Indeed, as pointed out by Leonard,6 when 
Ji- = 1/2, the most reasonable and accurate approximation to & 1/2 can be found via linear 
interpolation(that is, & 1,2 = 314) in the absence of any other additional information-the upwind 
approximation fails to satisfy this rather obvious condition. 

It is evident from Table I and Figure 5 that none of the five schemes given therein can 
unconditionally and simultaneously achieve monotonicity, high accuracy and convective stability. 
In order to realize such a goal, the use of some form of non-linear scheme is unavoidable, that is, 
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1.5 - 

- 

1.0 - 

( i )  central differencing 

(id second order upwind 

(v) upwind 

I I I I I 

Figure 5. Normalized values of 6,- ,,z for various well known approximations 

$i- The exponential interpolation 
function (EIF) proposed by Leonard,6 which has the form $i- = A  +Bexp(Cx) (where A,  B and 
C are uniquely determined by the value of the dependent variable at the nearest three upstream 
points), satisfies this requirement. This exponential approximation has shown itself to be well 
suited to explicit time-marching calculations for transient incompressible flow problems. 
Unfortunately, extension of the scheme to implicit steady-state flow calculations, particularly for 
the case of non-uniform mesh spacings, is not obvious. The boundedness/monotonicity-preserving 
approximation described in the next section is based on and satisfies the CBC and is referred to as 
curvature-compensated convective transport. It is quasi-linear rather than non-linear as in the case 
of Leonard’s EIF. 

cannot be thought of as just a simple linear function of &- 

4. CURVATURE-COMPENSATED CONVECTIVE TRANSPORT 

An optimum upstream weighted approximation for convection 

given in 
Table I range from O(Ax2) to O(Ax3), their predictive powers, in the absence of very steep gradients 
in the dependent variable 4, are comparable. Indeed, in relation to QUICK and CUI the authors 
have shown,* for a variety of laminar fluid flow problems, that the results achieved with both 
approximations are practically indistinguishable. This is not what one would expect if the order of 
accuracy of finite difference expressions is to be judged in relation to the largest of the truncation 
error terms, and is alien to established thinking. Interestingly enough, other authors’ are known to 

Although the order of accuracy of the various higher-order approximations to &- 
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give credence and support to such findings. Therefore, on the basis of this paradox, it is postulated 
that any upwind biased approximation to bi- 1/2 which can be shown to contain, at most, a second- 
order truncation error should be capable of producing accurate solutions (in comparison with 
those obtained by pure upwinding). 

Consider the right-hand face of the control volume centred at i - 1 when ui- 1/2 > 0 and perform 
Taylor series expansions about the left and right nodes directly adjacent to it, giving 

4 i - 2 = 4 i - 1 / 2 - ~ 4 ~ - 1 / 2 + ~ 4 : - 1 / 2 - - 4 ! "  3Ax 9Ax2 9Ax3 
I - 112 + HOT. 

2 16 

By taking suitable combinations of the above expansions and ignoring the higher-order terms 
(HOT), it is not difficult to show that 

Similarly, it can be shown that a measure of the upstream curvature is given by 

We now introduce (10) into (9), in a rather novel way, to give 

where a- (the -denoting at the right-hand face of the control volume centred at i -  1) is a variable 
parameter that remains to be determined. The leading truncation error term in (1 1) is O(a-Ax2) 
and by combining the above expressions this way we have effectively introduced a second-order 
curvature compensation in a- to the third-order accurate approximation for 4i -  An analogous 
expression for the left-hand face of the control volume can be derived in exactly the same way. 
Normalizing equation (1 1) according to (4) and ignoring the truncation error terms, we have that 

(12) $i- 1/2 =(?+ 2a-)& 1 +(i + a-) .  

The approximation to the face value given by equation ( 1  l), or equation (12) in normalized form, 
can be viewed as an optimum upstream weighted approximation for convection because, by a 
suitable choice of a- at each node, various discretization schemes are readily obtained, such as 
Leonard's EIF and QUICK approximation, CUI, second-order upwinding and central differen- 
cing. In a similar fashion, if a- is fixed at a suitable constant value everywhere, several of these 
higher-order polynomial schemes can be formed-see Table I. However, since a- =O is indicative 
of the maximum accuracy obtainable, O(Ax3), it is essential to optimize this parameter in such a 
way that it lies as close to zero as possible, while preserving boundedness and ensuring that 
convective stability is maintained for all values of a- throughout the solution domain. 
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Determination of the variable a-  

The value of $i- 112 predicted when a- = O  over the monotonic range of 4,- is greater than 1 
when $ i -  > 5/6. Therefore the minimum requirement to keep 4 bounded in this situation is to set 
6,- l , z  = 1 for $ i - 1 ~ ( 5 / 6 ,  13 (line cd in Figure 6). We have already seen that when a- = O  and 
6,- z +0, $i- l jz  is too large, causing an undershoot problem, and it is clear from Figures 4 and 5 
that this poses a greater threat to boundedness. Also, it is obvious that if, as is the strategy here, the 
case 01- = O  is the preferred choice in terms of achieving maximum accuracy, there is the need for a 
further constraint on $i- in this region. It is possible for our professional computational fluid 
dynamicist to find such a constraint, if in addition to 1/2  E ( $ ~ -  1,1] one insists that 4,- 112 is 
determined predominately by the two upstream values, $i- at x = 0 and $i - at x = Ax. This is a 
plausible assumption since the transport of 4 by convection is only weakly dependent on the 
downstream conditions. When a- = O  is used to approximate $i- l , z ,  the implied normalized 
upstream nodal value at  i - 3/2 is zero when 6,- = 1/6 (a property of the quadratic profile). Within 
this potential undershoot region (4,- = + 0) boundedness can be preserved by imposing a linear 
relationship (line ab in Figure 6) between the point (1/6, 1/2) on the 01- = O  line and the origin. The 
choice of a straight line and the point (1/6, 1/2) is completely arbitrary, giving a much larger 
reduction in 6,- 112, compared with the a- = O  line over the same region. Over the remainder of the 
monotonic range, 6,- E[ 1/6,5/6], a- = 0. Therefore a- is uniquely defined for $i- E[O, I], the 
CBC is satisfied and high accuracy, for moderate values of $i- 1 ,  is achieved. 

Ideally, outside the monotonic range of $i- 1, the two lines which deviate from the 01- = O  line 
should be joined with the latter in order to achieve ‘high accuracy’ (in terms of a Taylor series 
expansion). However, the line $i- 1,2 = 6, - is the only possible choice if the CBC is to be satisfied. 
Here, there is a conflict between accuracy and boundedness-both cannot be achieved 
simultaneously. Further information is necessary to resolve this problem (for example, global 
optimization between $ i -  and $i-3/2, such that the inequalities(7a) and (7c) are satisfied, would 

a I I 
0 1 0  2.0 

4i-, 

-1.0 L 
Figure 6. Representation of the SMART algorithm in the $i- , , 2 )  plane 
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require the use of more than three nodal values to approximate the face value). However, the 
satisfaction of the boundedness constraint appears to be more important than the quest for 
accuracy-the latter being relegated to one of secondary importance in regions where high-wave- 
number components of 4 dominate, as explained earlier. Therefore the line & 112 = &2 should 
be employed for $i-l $[O, 11. It is important to note that the use of the line $i- l jz  = 4i-l, via 
equation (1 l), is a second-order, not first-order, approximation. 

The S M A R T  algorithm 

The preceding analysis and the piecewise continuous function thus generated, which ensures 
bounded solutions, can be conveniently summarized into what we term a Sharp and Monotonic 
Algorithm for Realistic Transport (SMART) by convection. Its inherent simplicity is self-evident: 

where 

$i- and a- E( - 1/8,3/8) if $i-l+CO, 11, 
3$i-1 and ~ - E ( O ,  3/83 if $i - E [0, 1/6), 
1 and a - ' ~ [ - 1 / 8 , 0 )  if $i- ~ ( 5 / 6 ,  I], 
$ (2$i -1+1)  and a-=O if $i-l~[1/6, 5/61. 

(14) 6i- 1/2 = 

It is clear that $ i - l  must be known before 6i-ljz or a- can be determined. For implicit 
calculations this necessitates the use of an iterative process (even in the case of linear problems), 
that is, the use of previous known values of 4 to calculate values for both $i- and $i- 1 / 2 ,  which in 
turn are used to determine t ~ -  via (13). With these current values of a, spanning the solution 
domain, a new solution for 4 can be obtained, the process being repeated until a converged 
solution is achieved. The functional dependence of a on $i- is shown in Figure 7. 

All that remains is to show that equations (1 1 H l 4 )  satisfy convective stability. Assuming 
constant velocity (u = uo), we have that 

where a+ is the corresponding value of the variable a at the left-hand face of the control volume 
centred at i- 1.  From the SMART algorithm we see that a € [  - 1/8,3/8] and in this range equation 
(15) is always less than zero-hence the convective stability property is satisfied. Note that a- and 
a+ can never be - 1/8 simultaneously. The corresponding expression relating to 4 i -3 /2 ,  when 
~~-,~,>Ofollowsquitenaturally,asdo thosefor & l j z  whenui-,,,<Oand 4i-3,2 when ui -312  <O, 
which can be found using an obvious reflection principle. 

The effectiveness of the CCCT approach in modelling convection is demonstrated in Section 6 
with the aid of two test problems in the limit as the diffusion and source terms in equation (1) tend 
to zero. A detailed investigation of the transport of step and box-shaped 4 prdfiles by the process of 
pure convection is undertaken. Unlike the latter, the former test problem is not novel, having been 
adopted by a number of authors7.' for evaluating the relative performance of a variety of 
numerical approximations under the same conditions. Therefore, in order to avoid unnecessary 
repetition, and for the sake of clarity, only results obtained with the bounded, low-order, diffusive 
upwind and the unbounded high-order QUICK approximations are presented as a comparison 
with the SMART results. However, before proceeding with the comparisons, it is worthwhile 
dwelling on the important features of the solution strategy employed in the calculations. 
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5. SOLUTION STRATEGY 

Tridiagonal and pentadiagonal matrix algorithms (TDMA and PDMA) were used to solve the 
coefficient matrices generated by the upwind and QUICK/CCCT approximations, respectively, 
employing an alternating direction implicit (ADI) procedure. During the course of the present 
study it was found that the use of a PDMA (see Appendix 11) rather than a TDMA solver, in respect 
of the higher-order approximations, was both cost effective and efficient. The cost relative to that 
for the upwind approximation solved with a TDMA was estimated to be of the order of 50% 
higher-the increase being attributed (mainly) to the prolonged assembly time of the coefficient 
matrix in the case of the higher-order schemes rather than being due to the solvers themselves 
(since the approximations were coded in a generally applicable form covering the possibility of 
non-uniform mesh spacing). Also, the use of a PDMA did not affect the stability or convergence of 
the solutions. These findings are in contrast to those reported in a recent study by Syed et al." in 
similar circumstances. 
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The application of boundary conditions when higher-order approximations to convection are 
used can lead to complications. Therefore in the present study the first-order upwind approxi- 
mation was applied at all boundaries in each case. This was done for the sake of simplicity and in 
the belief that, for the test problems under consideration, it would have only a very small effect on 
the overall accuracy of the results. The computational grids quoted for the test problems described 
in Section 6 are inclusive of internal and boundary nodes, the latter coinciding with the physical 
boundary of the solution domain. 

for ~ ( 5 / 6 ,  a), shown in 
Figure 6, may generate non-unique solutions in the absence of a source term in the governing 
equation for 4. The value of 4 at the ith node in the discrete approximation is indeterminable (this 
may also depend on the starting conditions). On the other hand, if a source term is present the value 
of 4i will be uniquely determined by the magnitude of the source term there. This problem is easily 
overcome by relaxing slightly the constraint at the point c in Figure 6. In obtaining the results of 
the next section the authors effected a 5% decrease in the value of $i- 1/2 at this point, giving a new 
point c’ on the a = 0 line. The choice of 5% is completely arbitrary but has been kept small in order 
that the new line joining d to c‘ (shown exaggerated as a broken line) returns to the line a=O 
quickly, for the reasons given earlier. This action gives a one-to-one relationship between 1/2 

and $i- 1, and a unique interlinking between the values of 4 at all computational grid points. Note 
that the bounds on a and 1 ,  in these regions must be modified accordingly in the SMART 
algorithm. 

and $i-  in the SMART algorithm is piecewise linear but 
their non-linear interaction via a over the different ranges of $i... represents a novel phenomenon 
in relation to implicit flow calculations, in that the scheme may appear to be capable of producing 
two ‘non-stationary’ solutions for the problem under consideration. This is a consequence of the 
direct dependence of the coefficients making up the coefficient matrix upon the dependent variable 
itself. For example, the two vectors and +2 will be seen to be the solutions to a problem if their 
corresponding coefficient matrices are Al  (+2) and A2(91)r respectively, such that 

The simultaneous use of the lines $i- 1,2 = 1 and &- 1/2 = 

The relationship between $i- 

(assuming no source term). Indeed the real solution vector + must satisfy 

A(+)+ = 0. (17) 

The simplest and most satisfactory way to overcome the problem of non-stationary solutions is 
to under-relax a by a factor r (a constant over the solution domain) when it is updated, in the 
following manner: 

where a* represents the previous iterative value of a. In certain situations it may be necessary to 
experiment with the value of I before a stationary solution can be obtained. The authors have used 
the SMART algorithm for the simulation of a variety of complex turbulent fluid flow problems and 
have found the latter to be the exception rather than the rule. A value of 0 6  was found to be optimal 
for the test problems considered in Section 6. 

The results presented in the next section conform to the following convergence criteria applied at 
all computational grid points: 

a = a* + r(a - u*), (18) 

when n denotes the nth iterative cycle. 
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6. TEST PROBLEMS AND RESULTS 

(i) Pure convection of a step projile 

The flow configuration shown in Figure 8(a) constitutes a simple yet stringent test problem for 
examining the relative performance of different numerical approximations to convection because 
of the extremely sharp (indeed infinite) gradient in C#J that exists. The cell Peclet number is of course 
infinite. A comparison of the numerical solutions obtained with upwind, QUICK and SMART 
along the vertical central plane of the solution domain on a 21 x 21 regular mesh is presented in 
Figures 8(bHd) for different flow angles 8. It can be seen that the upwind approximation results in 
a very diffuse 4 profile for all three values of 8. This corruption of the steady-state solution is due 
solely to the influence of artificial (numerical) diffusion, which is seen to be the most severe at the 
maximum flow angle, 8 = 45". On the other hand, the steep gradient is fairly well preserved by the 
QUICK approximation at all flow angles; unfortunately, each solution exhibits an oscillatory 
behaviour but, more seriously, sections of the resultant profiles are seen to lie outside the physical 
bounds of the solution domain C#JE[ 1,2]. However, despite these undesirable features, two points in 
particular should be noted. Firstly, the oscillations do not grow in strength but die out rather 
quicklydemonstrating that the leading truncation terms in the QUICK approximation have a 
strong stabilizing effect. Secondly, the magnitude of the undershoot is greater than that of the 
overshoot and the difference is more pronounced at the smaller flow angle (0 = 25"). 

In contrast to the above, both accuracy and boundedness is achieved by the SMART 
approximation. The sharp gradient in 4 is again fairly well preserved by the SMART algorithm 
and the solution is free from spurious oscillations. Moreover, the results demonstrate that these 
rather desirable features are not very sensitive to the orientation of the flow field, that is, to the flow 
angle. This feature is important, particularly in relation to the simulation of complex recirculating 
fluid flows. 

Computational cost. 

Computational cost, or economy, is undoubtedly an important consideration when selecting a 
numerical approximation to perform a particular task. In relation to this test problem the total 
computational cost (sum of the central processing (CPU) time required for coefficient assembly, 
matrix inversion by TDMA or PDMA, etc.) was found to be roughly 1 :  13: 18 for 
upwind: QUICK : SMART-based on the same computational mesh (all solutions satisfying the 
same convergence criterion). It must be emphasized that the increased cost in using either QUICK 
or SMART relative to that for the upwind approximation can be attributed (in the main) to the 
assembjy of the matrix coefficients. However, rather than comparing computations performed on 
equal meshes to judge the relative costs of the different numerical approximations, it is instructive 
and arguably more meaningful to consider equal accuracy as a basis for determining economy. 
Accordingly, a measure of the relative accuracy E for the above and other such problems can be 
defined as 

where N is the number of computational grid points. 
The flow angle 0 = 45" was selected as a benchmark to examine the relative costs of the three 

approximations in achieving a solution whose accuracy (indicated by E )  is equal to a prescribed 
value Values of E and corresponding CPU times are plotted (for successive grid refinement) 
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Figure 8. Pure convection of a step profile showing the flow configuration (a) and comparisons of the profile obtained 
using upwind, QUICK and SMART with that of the exact solution at different flow angles: (b) 8 =45"; (c) 8= 35"; (d) 8 = 25" 
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QUICK and SMART for different mesh densities 
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against N ,  in Figures 9(a) and (b), respectively. It can be seen that the relative costs (in CPU 
seconds) for = 0.3 are approximately 1: 1-3: 1-3 x lo3 for SMART:QUICK:upwind. Inter- 
estingly, the relative costs of using the SMART or QUICK approximation are comparable; that 
for the upwind approximation is certainly not and is, not surprisingly, extremely high. From 
Figures 8 and 9 it should also be noted that: 

All three solutions approach 4 = $d = 1.5 at the discontinuity, indicating the existence of an 
irreducible error that cannot be removed with successive grid refinement, which for the test 
problems considered here is roughly equal to 

(i) 

(ii) Although the relative costs of the higher-order approximations are comparable, results 
obtained with QUICK will always contain overshoots or undershoots in the vicinity of very 
steep gradients, irrespective of successive grid refinement. 

(iii) The span of N is very wide and the relaxation factors used in solving for the different 
approximations are undoubtedly important. In generating the data contained in Figure 9 
no attempt was made to optimize convergence rates by selecting optimal relaxation factors 
for a particular approximation or mesh. These figures do, however, give a quantitative 
representation of the order of magnitude of the relative costs associated with the three 
approximations under investigation. 

(iv) Exact solutions for real fluid flow problems can rarely be found, but nevertheless the present 
study does give a somewhat clearer indication of just how computationally expensive the 
upwind approximation can be in relation to achieving accurate converged solutions. 

(ii) Pure convection of a box-shaped profile 

Consider now the box-shaped 4 profile shown in Figure lqa)  which is generated by imposing a 
step profile along the bottom and left-hand walls of the square solution domain. The value of 4 is 
constant along a streamline. This test problem has been selected because the severe, rapid change in 
the gradient of 4 is similar, in several ways, to many such profiles found in practical flow situations; 
for example, a severe peak profile characteristic of the change in turbulent kinetic energy across a 
thin shear layer. 

As before, the numerically predicted profiles across the central vertical plane of the solution 
domain are compared. However, this time the results obtained with three different meshes, 21 x 21, 
31 x 31 and 41 x 41, are presented (when y*=O.15). Once again, the solutions obtained with the 
upwind approximation exhibit a highly dispersive pattern; Figures 1qbHd). The steep gradients 
in 4 are almost completely smeared out by the numerical diffusion introduced there. Even when the 
grid is refined by a factor of two, the resultant solution represents only a minor improvement to 
that obtained on the coarser grid. The maximum predicted value of 4 increases only marginally 
from 1.55 to 1-65 (as compared with the exact value of 2). 

Figures 10(bHd) demonstrate quite clearly that both the QUICK and SMART approximations 
are able to resolve the sharp gradients on either side of the peaked profile. The latter, unlike the 
former, is free from any spurious oscillations and renders 4 bounded over the solution domain. As 
with the first test problem, there are several points that should be noted: 

In real fluid flow calculations the insensitivity to grid refinement exhibited by the solutions 
obtained with the upwind approximation may give a false impression and lead one to 
believe that an accurate grid-independent solution has been reached. 

(i) 
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(ii) Although the magnitude of the overshoot seen in the QUICK solution is substantially 
greater than that of its undershoots, the latter may lead to more serious problems in relation 
to real fluid flow simulations. For instance, if the turbulent kinetic energy or its dissipation 
rate were to become negative during a turbulent flow computation, the quality of the 
predicted solution would be greatly affected as a result of the strong coupling between these 
and the remaining mean flow quantities. 

(iii) This test problem demonstrates quite well the ability of the SMART algorithm to preserve 
steep gradients without accentuating or creating any new maxima or minima. 

7. CONCLUDING REMARKS 

The present paper discusses boundedness constraints in relation to numerical models for 
convective transport. A convection boundedness criterion has been identified and rigorously 
validated. It represents a necessary and sufficient condition for computed boundedness (when the 
approximation to a face value is determined by, at  most, three favourable upstream nodal values) 
and is valid for general multi-dimensional flow problems. 

A curvature compensation methodology for use in conjunction with a control-volume-derived 
finite difference approximation to steady-state convection-diffusion transport equations has been 
presented. The primary goal of this paper has been to derive a new approach to approximating the 
convection term in equations of this type, called CCCT, such that the solution remains bounded 
and devoid of the potential to create spurious spatial oscillations in the vicinity of sharp changes in 
gradient in the dependent variable. The CCCT approximation possesses upwind bias and satisfies 
the requirements of convective stability. 

The implicit CCCT algorithm SMART is applied to two test problems, one of which has been 
used by other authors in evaluating the relative performance of different numerical models for 
convection in terms of the degree of numerical diffusion associated with them. The second is 
somewhat different and exhibits a feature that is synonymous with real fluid flow problems. The 
SMART approximation is observed to perform extremely well, (a) exhibiting a relatively low level 
of anomalous spreading while also demonstrating its insensitivity to flow angle (unlike the low- 
order upwind approximation) and (b) resulting in fully bounded solutions that are free from 
spurious oscillations (unlike the high-order QUICK approximation). 

Although it might be argued that the only true test of the virtues of such approximations lies in 
their applicability to the simulation of complex fluid flows, the experience gained in relation to the 
two test problems supports the following conclusions: 

1. The SMART algorithm preserves boundedness and precludes the occurrence of spurious 
spatial oscillations (irrespective of the flow angle) while maintaining a high degree of 
accuracy. It is based on sound physical arguments and strict adherence to a convection 
boundedness criterion. Although the algorithm in its present form is the authors’ preferred 
choice, there is no reason why others should not be derived which perform the same task, 
provided they satisfy the CBC stated in Section 3. 

2. The SMART algorithm results in a relatively low level of numerical spreading, which is 
virtually insensitive to stream-to-grid obliqueness, and preserves steep gradients without 
accentuating or creating any new maxima or minima. 

3. Although the CCCT approximation is non-linear, its implementation is extremely straight- 
forward. Also, the computational cost associated with the use of this scheme is found to be 
relatively low. 
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4. Since each of the approximations listed in Table I can be found from equation (1 1) with 01 fixed 
at an appropriate constant value, the necessity of coding each one of them separately is 
alleviated. They can be replaced by just one approximation, even for the case of non-uniform 
mesh spacing. 

5. The problem associated with the upwind scheme in relation to obtaining solutions of 
comparable accuracy to those found with the SMART and QUICK approximations on a 
much coarser mesh must question the wisdom of using low-order schemes in conjunction 
with a multi-grid convergence accelerator. 

In view of these statements the authors believe that this work represents a significant 
contribution to the field of computational fluid dynamics: to quote Leonard4: 'Any method which 
simultaneously possess accuracy, stability algorithmic simplicity, and an easily comprehended 
physical interpretation would seem to be optimal'. CCCT certainly falls into this category and also 
includes a further essential ingredient-satisfaction of the boundedness property. 

Note 

The authors have employed the CCCT approximation to great effect in simulating several 
complex turbulent fluid flows for different geometries, some of the results of which can be found in a 
complementary publication." Similarly, the method has been used in the solution of transient flow 
problems and is presently under investigation for use with a multi-gridding procedure." These 
results and others will be appearing in due course. 
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NOMENCLATURE 

coefficient matrix 
length of solution domain 
total number of nodes 
relaxation factor 
source term 
normalized effective source term 
general velocity component 
velocity at node i 
general Cartesian co-ordinate 
variable parameter in equation (8) 
scalar transport variable 
transport coefficient 
flow angle 
mesh size in x-direction 
horizontal and vertical velocity 
Cartesian co-ordinates 
relative error 
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Superscripts 

+/- value at left/right face of a control volume 
a normalized value 

- 

Subscripts 

i, i -  1, etc. value at the nodes i, i -  1, etc. 

Other 
- asymptotic limit 
O( ) of the order of 
E contained within 
$ not contained within 
b ~ [ a ,  b) a < 6 < b ,  etc. 

APPENDIX I: THE VALIDITY OF TI E CBC IN JLTI-D ENS10 1TS 

Using a more convenient (but equally well known) notation to that employed in the main text, the 
general integral form for the transport of 4 in the case of three-dimensional purely convective flow 
can be written as 

(21) [(pud)e-(pu4)wl + c(pu4)n-(Pud)sl + [ (pw4)u-(pw4)dl  =o, 
x -direction y - direction z - direction 

where p and u(u, u, w )  are the fluid density and velocities, respectively (both of which are not 
necessarily constant), and the subscripts e, w, n, etc. denote the average value of the quantity 
concerned, over that surface of the control volume centred at P, in that direction. The areas of each 
of the surfaces bounding the control volume are assumed to be equal and the components of u are 
taken to be positive in their corresponding co-ordinate directions. 

For the case of pure convection, physical consideration leads one to the conclusion that 4 must 
be bounded, over the whole solution domain, with respect to the attendant boundary conditions. 
In order for the computed solution to mirror this important feature, the computed 4, must lie 
within the range of values of its nearest neighbours 4E, &, &, &, 4" and 4D. Therefore, in multi- 
dimensions, it is enough to prove that the CBC is both a necessary and sufficient condition for 
computed boundedness if it can be shown that the computed solution of $p (given, in each co- 
ordinate direction, by any approximation satisfying the CBC) cannot lie outside the range of values 
of its six neighbours. The proof is as follows. 

If 4p is assumed to lie outside the range $ J ~  to 4w in the x-direction, c $ ~ ~  to c $ ~  in the y-direction 
and c$" to (bD in the z-direction, then satisfaction of the CBC (in each direction) requires that 
4p = 4e, +p = 4n and 4p = 4" (it is important to note that this does not necessarily imply that the 
face values are replaced by a pure upwind approximation) and hence equation (21) can be written 
as 

(22) (PU4)W + ( P V 4 ) s  + ( P W 4 ) d  

(PU)e + (Po),+ ( P W ) ~  
4 P  = 

and, by virtue of the continuity constraint, 
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Hence Cpp is simply the mean of the face values 4w, Cp, and 4d because u>O in each component 
direction. It should be noted that, if u < O  in any one direction, then the CBC will require that 
4w = $p instead of Cp, = Cpp (in the x-direction, say). Hence there is no loss of generality by taking the 
components of u to be positive in all directions. 

Now, since the CBC requires that 4 , ~ [ 4 ~ ,  4p], 4 s ~ [ 4 S ,  4p] and $,,E[&, Cpp], 4p cannot be 
greater (or less) than &, and 4D simultaneously. Therefore the computed 4p given by an 
approximation which satisfies the CBC (in each co-ordinate direction) cannot lie outside the range 
of its nearest neighbours at the E, W, N, S, U and D nodes. 

APPENDIX 11: ADI-PENTADIAGONAL MATRIX ALGORITHM (PDMA) 

The ADI-PDMA approach is advantageous for use with high-order approximations to the 
convective term because: 

1. It has the combined advantage of simplicity and a low storage requirement. 
2. The coefficient matrices A generated by schemes such as CCCT, QUICK and CUI require no 

special reformulations as would be the case if a TDMA were employed. 
3. When an AD1 solution procedure is adopted, the current line is solved exactly. 

Making use of the notation employed in Appendix I then, if the y and z values (say) of the 
dependent variable along an x-direction (east-west) grid line are fixed at their previous iterative 
values, the set of quasi-linear algebraic equations thus generated can be written in the following 
form: 

(24) 
where Y p = ~ A , $ , + S p  and m=N, S ,  NN, SS, U, D7 UU and DD. 

Applying (24) at all nodal points k along this grid line results in a pentadiagonal coefficient 
matrix which can be decoupled by LU-decomposition to generate the following recursive 
procedure: 

- A E E ~ E E - A E C ~ E  + A P ~ P - A w ~ w  -AwwCpww =YP, 

( 4 P ) k  = vk - 6 k ( 4 P ) k  + 1 - l k ( & P ) k  + 2 3 (25) 
where 

O k =  -(AEE)k,  

Yk =(AP)k - Ok’k - 2 - bksk - 1 9 

P k  = -(AE)k - Ok6k - 2 7 

- [ ( A W ) k $ - b k A k - l I / Y k ,  

‘k= -(AWW)k/Yk. (27) 
To obtain a solution throughout the computational domain of interest, the above procedure is 
followed on each of the east-west grid lines in turn, using the most recently calculated values from 
the previous grid line. The procedure is then repeated in the remaining co-ordinate directions 
(y and z). This pattern can be repeated any number of times to achieve a desired level of accuracy. 
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